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Faster Math Functions

Robin Green
R&D Programmer

Sony Computer Entertainment America

What Is This Talk About?

This is an Advanced Lecture
• There will be equations
• Programming experience is assumed

Writing your own Math functions
• Optimize for Speed
• Optimize for Accuracy
• Optimize for Space
• Understand the trade-offs
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Running Order

Part One – 10:00 to 11:00
• Floating Point Recap
• Measuring Error
• Incremental Methods

- Sine and Cosine

Part Two – 11:15 to 12:30
• Table Based Methods
• Range Reduction
• Polynomial Approximation

Running Order

Part Three – 2:00 to 4:00
• Fast Polynomial Evaluation
• Higher Order functions

- Tangent
- Arctangent, Arcsine and Arccosine

Part Four – 4:15 to 6:00
• More Functions

- Exponent and Logarithm
- Raising to a Power

• Q&A
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Floating Point Formats
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32-bit Single Precision Float

Floating Point Standards

IEEE 754 is undergoing revision.
• In process right now.

Get to know the issues.
• Quiet and Signaling NaNs.
• Specifying Transcendental Functions.
• Fused Multiply-Add instructions.
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History of IEEE 754

History of IEEE 754

IEEE754 ratified in 1985 after 8 years of 
meetings.

A story of pride, ignorance, political 
intrigue, industrial secrets and genius.

A battle of Good Enough vs. The Best.
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Timeline: The Dark Ages

Tower of Babel
• On one machine, values acted as non-zero for add/subtract 

and zero for multiply-divide.

• On another platform, some values would overflow if 
multiplied by 1.0, but could grow by addition.

• On another platform, multiplying by 1.0 would remove the 
lowest 4 bits of your value.

• Programmers got used to storing numbers like this

b = b * 1.0;
if(b==0.0) error;
else return a/b; 

b = (a + a) - a;

Timeline: 8087 needs “The Best”
Intel decided the 8087 has to appeal to 
the new mass market.

• Help “normal” programmers avoid the 
counterintuitive traps.

• Full math library in hardware, using only 40,000 
gates.

• Kahan, Coonen and Stone prepare draft spec, the 
K-C-S document.
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Timeline: IEEE Meetings

Nat Semi, IBM, DEC, Zilog, Motorola, 
Intel all present specifications.
• Cray and CDC do not attend…

DEC with VAX has largest installed base. 
• Double float had 8-bit exponent.
• Added an 11-bit “G” format to match K-C-S, but 

with a different exponent bias.

K-C-S has mixed response.
• Looks complicated and expensive to build.
• But there is a rationale behind every detail.

Timeline: The Big Argument

K-C-S specified Gradual Underflow.
DEC didn’t.
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Timeline: The Big Argument

Both Cray and VAX had no way of 
detecting flush-to-zero.

Experienced programmers could add 
extra code to handle these exceptions.

How to measure the Cost/Benefit ratio?

Timeline: Trench Warfare
DEC vs. Intel
• DEC argued that Gradual Underflow was 

impossible to implement on VAX and too 
expensive.

• Intel had cheap solutions that they couldn’t share 
(similar to a pipelined cache miss).

Advocates fought for every inch
• George Taylor from U.C.Berkeley built a drop-in 

VAX replacement FPU.
• The argument for “impossible to build” was 

broken. 
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Timeline: Trench Warfare

DEC turned to theoretical arguments
• If DEC could show that GU was unnecessary then 

K-C-S would be forced to be identical to VAX.

K-C-S had hard working advocates
• Prof Donald Knuth, programming guru.
• Dr. J.H. Wilkinson, error-analysis & FORTRAN.

Then DEC decided to force the 
impasse…

Timeline: Showdown
DEC found themselves a hired gun
• U.Maryland Prof G.W.Stewart III, a highly respected 

numerical analyst and independent researcher

In 1981 in Boston, he delivered his verdict 
verbally…

“On balance, I think Gradual Underflow is 
the right thing to do.”
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Timeline: Aftermath

By 1984, IEEE 754 had been 
implemented in hardware by:

It was the de facto standard long before 
being a published standard.

• Intel
• AMD
• Apple
• IBM

• Nat. Semi.
• Weitek
• Zilog
• AT&T

Why IEEE 754 is best
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The Format
Sign, Exponent, Mantissa
• Mantissa used to be called “Significand”

Why base2?
• Base2 has the smallest “wobble”.
• Base2 also has the hidden bit.

- More accuracy than any other base for N bits.
- Base3 arguments always argue using fixed-point values

Why 32, 64 and 80-bit formats?
• Because 8087 could only do 64-bits of carry 

propagation in a cycle!

Why A Biased Exponent?

For sorting.
Biased towards underflow.

exp_max =  127;
exp_min = -126;

• Small number reciprocals will never Overflow.
• Large numbers will use Gradual Underflow.
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The Format

Note the Symmetry

Not A Number???????????????????????111111110

Positive Infinity00000000000000000000000111111110

Positive Numbers???????????????????????000000010

Positive Denormal??????????????????????1000000000

Positive Zero00000000000000000000000000000000

Negative Zero00000000000000000000000000000001

Negative Denormal??????????????????????1000000001

Negative Numbers???????????????????????111111101

Negative Infinity00000000000000000000000111111111

Not A Number???????????????????????111111111

Rounding

IEEE says operations must be “exactly 
rounded towards even”.

Why towards even?
• To stop iterations slewing towards infinity.
• Cheap to do using hidden “guard digits”.

Why support different rounding modes?
• Used in special algorithms, e.g. decimal to binary 

conversion.
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Rounding

How to round irrational numbers?
• Impossible to round infinite numbers accurately.
• Called the Table Makers Dilemma.

- In order to calculate the correct rounding, you need to 
calculate worst case values to infinite precision.

- E.g.  Sin(x) = 0.02310000000000000007

IEEE754 just doesn’t specify functions
• Recent work looking into worst case values

Special Values

Zero
• 0.0 = 0x00000000

NaN
• Not an number.
• NaN = sqrt(-x), 0*infinity, 0/0, etc.
• Propagates into later expressions.
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Special Values

±Infinity
• Allows calculation to continue without overflow.

Why does 0/0=NaN when ±x/0=±infinity?
• Because of limit values.
• a/b can approach many values, e.g.

( )

( ) 0as   
0cos1

1sin
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→
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→
x

x
x

x
x

Signed Zero

Basically, WTF?
• Guaranteed that +0 = -0, so no worries.

Used to recover the sign of an 
overflowed value
• Allows 1/(1/x) = x as x→+inf
• Allows log(0)=-inf and log(-x)=NaN
• In complex math, sqrt(1/-1) = 1/sqrt(-1) only 

works if you have signed zero
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Destructive Cancellation
The nastiest problem in floating point.
Caused by subtracting two very similar values
• For example, in quadratic equation if b2 ≈ 4ac
• In fixed point…

• Which gets renormalised with no signal that almost all digits 
have been lost.

1.10010011010010010011101
- 1.10010011010010010011100

0.00000000000000000000001

Compiler “Optimizations”
Floating Point does not obey the laws of 
algebra.
• Replace x/2 with 0.5*x – good
• Replace x/10 with 0.1*x – bad
• Replace x*y-x*z with x*(y-z) – bad if y≈z
• Replace (x+y)+z with x+(y+z) – bad

A good compiler will not alter or reorder 
floating point expressions.
• Compilers should flag bad constants, e.g.

float x = 1.0e-40;
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Decimal to Binary Conversion
In order to reconstruct the correct binary value 
from a decimal constant

Single float : 9 digits
Double float : 17 digits

• Loose proof in the Proceedings
- works by analyzing the number of representable values in sub-

ranges of the number line, showing a need for between 6 and 
9 decimal digits for single precision
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Approximation Error

Measuring Error

Absolute Error
• Measures the size of deviation, but tell us nothing 

about the significance
• The abs() is often ignored for graphing

approxactualabs fferror −=
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Measuring Error

Absolute Error sometimes written ULPs
• Units in the Last Place

0.1590.03141590.0314

20.03140.0312

ULPsActualApprox

Measuring Error

Relative Error
• A measure of how important the error is.

actual

approx
rel f

f
error −=1
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Example: Smoothstep Function

Used for ease-in ease-out animations 
and anti-aliasing hard edges
• Flat tangents at x=0 and x=1

( )
2

cos
2
1)( xxf π
−=

Smoothstep Function
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Smoothstep Approximation

A cheap polynomial approximation
• From the family of Hermite blending functions.

32 23)( xxxfapprox −=

Smoothstep Approximation
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Absolute Error

Relative Error
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Relative Error Detail
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Incremental Algorithms

Incremental Methods

Q: What is the fastest method to calculate 
sine and cosine of an angle?

A: Just two instructions.
There are however two provisos.

1. You have a previous answer to the problem.
2. You are taking equally spaced steps.
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Resonant Filter
int N = 64;
float a = sin(2PI/N);
float c = 1.0f;
float s = 0.0f;
for(int i=0; i<M; ++i) {

output_sin = s;
output_cos = c;
c = c – s*a;
s = s + c*a;
...

}

Example using 64 steps 
per cycle.

NOTE: new s uses the 
previously updated c.

Resonant Filter Graph
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Resonant Filter Quarter Circle

Goertzels Algorithm
A more accurate 
algorithm
• Uses two previous samples 

(Second Order)

Calculates x = 
sin(a+n*b) for all 
integer n

float cb = 2*cos(b);
float s2 = sin(a+b);
float s1 = sin(a+2*b);
float c2 = cos(a+b);
float c1 = cos(a+2*b);
float s,c;
for(int i=0; i<m; ++i) {

s = cb*s1-s2;
c = cb*c1-c2;
s2 = s1; c2 = c1;
s1 = s; c1 = c;
output_sin = s;
output_cos = c;
...

}
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Goertzels Algorithm Graph

Goertzels Initialization

Needs careful initialization
• You must account for a three iteration lag

// N steps over 2PI radians
float b = 2PI/N;

// subtract three steps from initial value
float new_a = a – 3.0f * b;
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Goertzels Algorithm Quarter Circle
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Table Based Solutions

Table Based Algorithms
Traditionally the sine/cosine table was the 
fastest possible algorithm
• With slow memory accesses, it no longer is

New architectures resurrect the technique
• Vector processors with closely coupled memory
• Large caches with small tables forced in-cache

Calculate point samples of the function
• Hash off the input value to find the nearest samples
• Interpolate these closest samples to get the result
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Table Based Sine

Table Based Sine Error
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Precalculating Gradients
Given an index i, the approximation is…

( ) [ ] [ ] [ ])table1table(*tablesin iiix −+∆+≈

[ ] [ ]ii gradient*table ∆+=

Which fits nicely into a 4-vector…

cos-gradsin-gradcosinesine

How Accurate Is My Table?
The largest error occurs when two samples 
straddle the highest curvature.
• Given a stepsize of ∆x, the error E is:

• e.g. for 16 samples, the error will be:







 ∆−=

2
cos1 xE

( ) 0192147.016cos1 =− π
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How Big Should My Table Be?
Turning the problem around, how big should a 
table be for an accuracy of E?
• We just invert the expression…

( )
( )

( )

23
...19587.22

99.0arccos
01.01cos

%1cos1
%1

≈
>
>

−>
<−
=

N
N
N

N
N
E

π
π
π

How Big Should My Table Be?
We can replace the arccos() with a small angle 
approximation, giving us a looser bound.

Applying this to different accuracies gives us a 
feel for where tables are best used.

E
N

2
π

=
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Table Sizes

8.7e+8~infinite10-1764-bit float

880702510-732-bit float

8870310-524-bit float

514032-1516-bit int

4262-78-bit int

7540.0017450.1 degree

3170.017451 degree

282230.00010.01% accurate

9710.0010.1% accurate

3230.011% accurate

45°360°E
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Range Reduction

Range Reduction
We need to map an infinite range of input 
values x onto a finite working range [0..C].

For most transcendentals we use a technique 
called “Additive Range Reduction”
• Works like y = x mod C but without a divide.
• We just work out how many copies of C to subtract from x

to get it within the target range.
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1. We remap 0..C into the 0..1 range by scaling

2. We then truncate towards zero (e.g. convert to int)

3. We then subtract k copies of C from x.

Additive Range Reduction

float y = x – (float)k*C;

int k = (int)(x*invC);
// or (x*invC+0.5f);

const float C = range;
const float invC = 1.0f/C;
x = x*invC;

High Accuracy Range Reduction
Notice that y = x-k*C has a destructive 
subtraction.

Avoid this by encoding C in several constants.
• First constant C1 is a rational that has M bits of C’s 

mantissa, e.g. PI = 201/64 = 3.140625
• Second constant C2 = C - C1
• Overall effect is to encode C using more bits than machine 

accuracy.

float n = (float)k;
float y = (x – n*C1) – n*C2;
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Truncation Towards Zero
Another method for truncation
• Add the infamous 1.5 * 224 constant to your float
• Subtract it again
• You will have lost the fractional bits of the mantissa

• This technique requires you know the range of your input 
parameter…

A = 123.45   = 1111011.01110011001100110

B = 1.5*2^24 = 1100000000000000000000000.

A = A+B      = 1100000000000000001111011.

A = A-B      = 1111011.00000000000000000

Quadrant Tests
Instead of range reducing to a whole cycle, 
let’s use C=Pi/2 - a quarter cycle
• The lower bits of k now holds which quadrant our angle is in

Why is this useful?
• Because we can use double angle formulas
• A is our range reduced angle.
• B is our quadrant offset angle.

)sin()sin()cos()cos()cos(
)sin()cos()cos()sin()sin(

BABABA
BABABA

+=+
+=+
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Double Angle Formulas
With four quadrants, the double angle 
formulas now collapses into this useful form

( ) ( )
( ) ( )
( ) ( )
( ) ( )yy

yy
yy
yy

sin2*3sin
cos2*2sin

cos2*1sin
sin2*0sin

−=+
−=+

=+
=+

π
π
π
π

Four Segment Sine



37

A Sine Function
Leading to code like this:

float table_sin(float x)
{

const float C = PI/2.0f;
const float invC = 2.0f/PI;
int k = (int)(x*invC);
float y = x-(float)k*C;
switch(k&3) {
case 0: return sintable(y);
case 1: return sintable(TABLE_SIZE-y);
case 2: return -sintable(TABLE_SIZE-y);
default: return –sintable(y);

} 
return 0;

}

More Quadrants
Why stop at just four quadrants?
• If we have more quadrants we need to calculate both the 

sine and the cosine of y.
• This is called the reconstruction phase.

• Precalculate and store these constants.
• For little extra effort, why not return both the sine AND 

cosine of the angle at the same time?
• This function traditionally called sincos()in FORTRAN 

libraries

( ) ( ) 





+






=






 +

16
3sin*cos

16
3cos*sin

16
3sin πππ yyy
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Sixteen Segment Sine

float table_sin(float x)
{

const float C = PI/2.0f;
const float invC = 2.0f/PI;
int k = (int)(x*invC);
float y = x-(float)k*C;
float s = sintable(y);
float c = costable(y);
switch(k&15) {
case 0: return s;
case 1: return s*0.923879533f + c*0.382683432f;
case 2: return s*0.707106781f + c*0.707106781f;
case 3: return s*0.382683432f + c*0.923879533f;
case 4: return c;
...

} 
return 0;

}

Math Function Forms
Most math functions follow three phases of 
execution

This is a pattern you will see over and over
• Especially when we meet Polynomial Approximations

1. Range Reduction
2. Approximation
3. Reconstruction
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Polynomial Approximation
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Infinite Series
Most people learn about approximating 
functions from Calculus and Taylor series

If we had infinite time and infinite storage, 
this would be the end of the lecture.

( ) K−+−+−=
!9!7!5!3

sin
9753 xxxxxx

Taylor Series
Taylor series are generated by repeated 
differentiation
• More strictly, the Taylor Series around x=0 is called the 

Maclauren series

Usually illustrated by graphs of successive 
approximations fitting to a sine curve.

( ) ( ) ( ) ( ) ( )
K+

′′′
+

′′
+′+=

!3
0

!2
000 ffffxf
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Taylor Approx of Sine

Properties Of Taylor Series

This series shows all the signs of convergence
• Alternating signs
• Rapidly increasing divisor

If we truncate at the 7th order, we get:

( ) K−+−+−=
!9!7!5!3

sin
9753 xxxxxx

75

753

00019841.00083333.016667.0
5040

1
120

1
6
1)sin(

xxxx

xxxxx

−+−=

−+−≈
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Graph of Taylor Series Error
The Taylor Series, however, has problems
• The problem lies in the error
• Very accurate for small values but is exponentially bad for 

larger values.

So we just reduce the range, right?
• This improves the maximal error.
• Bigger reconstruction cost, large errors at boundaries.
• The distribution of error remain the same.

How about generating series about x=Pi/4
• Improves the maximal error.
• Now you have twice as many coefficients.

Taylor 7th Order for –Pi/2..Pi/2
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Taylor 7th Order for 0..Pi/2

7

6

5

4

3

2

64500014029890
08200021075890
1800870314700
600038530800

16641544290
200010117320

0000231211
11000000230140)sin(

x.
x.

x.
x.

x.
x.

x.
.x

−

+−

+

+−

+−

+−

+
+−≈

Taylor 7th Order for 0..Pi/2

And now the bad news.
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Taylor Series Conclusion

For our purposes a Taylor series is next 
to useless
• Wherever you squash error it pops back up 

somewhere else.
• Sine is a well behaved function, the general case 

is much worse.

We need a better technique.
• Make the worst case nearly as good as the best 

case.
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Orthogonal Polynomials

Orthogonal Polynomials
Families of polynomials with interesting 
properties.
• Named after the mathematicians who discovered them
• Chebyshev, Laguerre, Jacobi, Legendre, etc.

Integrating the product of two O.P.s returns 
zero if the two functions are different.

• Where w(x) is a weighting function.

( ) ( )∫ 



 =

=
otherwise

 if

0
)(

jic
dxxPxPxw

j

ji
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Orthogonal Polynomials
Why should we care?
• If we replace Pi(x) an arbitrary function f(x), we end up with 

a scalar value that states how similar f(x) is to Pj(x).
• This process is called projection and is often notated as

Orthogonal polynomials can be used to 
approximate functions
• Much like a Fourier Transform, they can break functions into 

approximating components.

( ) ( ) ( )∫== dxxwxPxfPwfPf jjj

Chebyshev Polynomials
Lets take a concrete example
• The Chebyshev Polynomials Tn(x)

( )
( )
( )
( )
( )
( )

( ) ( ) ( )xTxxTxT
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xxxT

xxT

xxT
xT

nnn 11
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52016
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−−=

−=

−=

=
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Chebyshev Plots
The first five Chebyshev polynomials

Chebyshev Approximation
A worked example.
• Let’s approximate f(x) = sin(x) over [-π..π] using Chebyshev

Polynomials.
• First, transform the domain into [-1..1]

( )

( )x

baxbafxg

b
a

π

π
π

sin
22

=







 +

+
−

=

=
−=
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Chebyshev Approximation
Calculate coefficient kn for each Tn(x)

Where the constant cn and weighting function w(x) are

( ) ( ) ( )
n

n
n c

dxxwxTxg
k ∫−=

1

1





 =

=
otherwise

 if
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π n
cn ( )

21
1

x
xw

−
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Chebyshev Coefficients
The resulting coefficients

• This is an infinite series, but we truncate it to produce an 
approximation to g(x)
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=
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=
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Chebyshev Reconstruction
Reconstruct the polynomial in x
• Multiply through using the coefficients kn

( )
( )
( )
( )
( )
( )
( )xxxk
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xxk
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kxg
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Chebyshev Result
Finally rescale the domain back to [-π..π]

• Giving us the polynomial approximation 
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The approximated function f(x)

Chebyshev Result

The absolute error sin(x)-f(x)

Chebyshev Absolute Error
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The relative error tells a different story…

Chebyshev Relative Error

Chebyshev Approximation
Good points
• Approximates an explicit, fixed range
• Uses easy to generate polynomials
• Integration is numerically straightforward
• Orthogonal Polynomials used as basis for new techniques

- E.g. Spherical Harmonic Lighting

Bad points
• Imprecise control of error
• No clear way of deciding where to truncate series
• Poor relative error performance
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[Continued in part 2]


