Faster Math Functions

Robin Green
R\&D Programmer
Sony Computer Entertainment America

What Is This Talk About?

- This is an Advanced Lecture
- There will be equations
- Programming experience is assumed
- Writing your own Math functions
- Optimize for Speed
- Optimize for Accuracy
- Optimize for Space
- Understand the trade-offs

Running Order

- Part One - 10:00 to 11:00
- Floating Point Recap
- Measuring Error
- Incremental Methods
- Sine and Cosine
- Part Two - 11:15 to 12:30
- Table Based Methods
- Range Reduction
- Polynomial Approximation

Running Order

- Part Three - 2:00 to 4:00
- Fast Polynomial Evaluation
- Higher Order functions
- Tangent
- Arctangent, Arcsine and Arccosine
- Part Four - 4:15 to 6:00
- More Functions
- Exponent and Logarithm
- Raising to a Power
- Q\&A

Floating Point Formats

32-bit Single Precision Float

011100010 1 0010100000000010000

Floating Point Standards

- IEEE 754 is undergoing revision.
- In process right now.
- Get to know the issues.
- Quiet and Signaling NaNs.
- Specifying Transcendental Functions.
- Fused Multiply-Add instructions.

History of IEEE 754

History of IEEE 754

- IEEE754 ratified in 1985 after 8 years of meetings.
- A story of pride, ignorance, political intrigue, industrial secrets and genius.
- A battle of Good Enough vs. The Best.

Timeline: The Dark Ages

- Tower of Babel

- On one machine, values acted as non-zero for add/subtract and zero for multiply-divide.

```
b = b * 1.0;
if(b==0.0) error;
else return a/b;
```

- On another platform, some values would overflow if multiplied by 1.0 , but could grow by addition.
- On another platform, multiplying by 1.0 would remove the lowest 4 bits of your value.
- Programmers got used to storing numbers like this

```
b = (a + a) - a;
```


Timeline: 8087 needs "The Best"

- Intel decided the $\mathbf{8 0 8 7}$ has to appeal to the new mass market.
- Help "normal" programmers avoid the counterintuitive traps.
- Full math library in hardware, using only 40,000 gates.
- Kahan, Coonen and Stone prepare draft spec, the K-C-S document.

Timeline: IEEE Meetings

- Nat Semi, IBM, DEC, Zilog, Motorola, Intel all present specifications.
- Cray and CDC do not attend...
- DEC with VAX has largest installed base.
- Double float had 8-bit exponent.
- Added an 11-bit "G" format to match K-C-S, but with a different exponent bias.
- K-C-S has mixed response.
- Looks complicated and expensive to build.
- But there is a rationale behind every detail.

Timeline: The Big Argument

- K-C-S specified Gradual Underflow.
- DEC didn't.

Timeline: The Big Argument

- Both Cray and VAX had no way of detecting flush-to-zero.
- Experienced programmers could add extra code to handle these exceptions.
- How to measure the Cost/Benefit ratio?

Timeline: Trench Warfare

- DEC vs. Intel
- DEC argued that Gradual Underflow was impossible to implement on VAX and too expensive.
- Intel had cheap solutions that they couldn't share (similar to a pipelined cache miss).
- Advocates fought for every inch
- George Taylor from U.C.Berkeley built a drop-in VAX replacement FPU.
- The argument for "impossible to build" was broken.

Timeline: Trench Warfare

- DEC turned to theoretical arguments
- If DEC could show that GU was unnecessary then K-C-S would be forced to be identical to VAX.
- K-C-S had hard working advocates
- Prof Donald Knuth, programming guru.
- Dr. J.H. Wilkinson, error-analysis \& FORTRAN.
- Then DEC decided to force the impasse...

Timeline: Showdown

- DEC found themselves a hired gun
- U.Maryland Prof G.W.Stewart III, a highly respected numerical analyst and independent researcher
- In 1981 in Boston, he delivered his verdict verbally...

> "On balance, I think Gradual Underflow is the right thing to do."

Timeline: Aftermath

- By 1984, IEEE 754 had been implemented in hardware by:
- Intel - Nat. Semi.
- AMD - Weitek
- Apple - Zilog
- IBM • AT\&T
- It was the de facto standard long before being a published standard.

Why IEEE 754 is best

The Format

- Sign, Exponent, Mantissa
- Mantissa used to be called "Significand"
- Why base2?
- Base2 has the smallest "wobble".
- Base2 also has the hidden bit.
- More accuracy than any other base for N bits.
- Base3 arguments always argue using fixed-point values
- Why 32, 64 and 80-bit formats?
- Because 8087 could only do 64-bits of carry propagation in a cycle!

Why A Biased Exponent?

- For sorting.
- Biased towards underflow.

$$
\begin{aligned}
& \text { exp_max }=127 ; \\
& \text { exp_min }=-126 ;
\end{aligned}
$$

- Small number reciprocals will never Overflow.
- Large numbers will use Gradual Underflow.

The Format

- Note the Symmetry

| 1 | 11111111 | ??????????????????????? | Not A Number |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1111111 | 0000000000000000000000 | Negative Infinity |
| 1 | 11111110 | ??????????????????????? | Negative Numbers |
| 1 | 00000000 | ??????????????????????1 | Negative Denormal |
| 1 | 00000000 | 00000000000000000000000 | Negative Zero |
| 0 | 00000000 | 00000000000000000000000 | Positive Zero |
| 0 | 00000000 | ??????????????????????1 | Positive Denormal |
| 0 | 11111111 | 000000000000000000000000 | Positive Infinity |
| 0 | 11111111 | ???????????????????????? | Not A Number |

Rounding

- IEEE says operations must be "exactly rounded towards even".
- Why towards even?
- To stop iterations slewing towards infinity.
- Cheap to do using hidden "guard digits".
- Why support different rounding modes?
- Used in special algorithms, e.g. decimal to binary conversion.

Rounding

- How to round irrational numbers?
- Impossible to round infinite numbers accurately.
- Called the Table Makers Dilemma.
- In order to calculate the correct rounding, you need to calculate worst case values to infinite precision.
- E.g. $\operatorname{Sin}(x)=0.02310000000000000007$
- IEEE754 just doesn't specify functions
- Recent work looking into worst case values

Special Values

- Zero
- $0.0=0 \times 00000000$
- NaN
- Not an number.
- $\mathrm{NaN}=$ sqrt(-x), 0 *infinity, $0 / 0$, etc.
- Propagates into later expressions.

Special Values

- \pm Infinity
- Allows calculation to continue without overflow.
- Why does $0 / 0=\mathrm{NaN}$ when $\pm \mathrm{x} / 0= \pm$ infinity?
- Because of limit values.
- a/b can approach many values, e.g.

$$
\left.\begin{array}{c}
\frac{\sin (x)}{x} \rightarrow 1 \\
\frac{1-\cos (x)}{x} \rightarrow 0
\end{array}\right\} \text { as } x \rightarrow 0
$$

Signed Zero

- Basically, WTF?
- Guaranteed that $+0=-0$, so no worries.
- Used to recover the sign of an overflowed value
- Allows $1 /(1 / x)=x$ as $x \rightarrow+$ inf
- Allows $\log (0)=-$ inf and $\log (-x)=\mathrm{NaN}$
- In complex math, sqrt(1/-1) = $1 /$ sqrt(-1) only works if you have signed zero

Destructive Cancellation

- The nastiest problem in floating point.
- Caused by subtracting two very similar values
- For example, in quadratic equation if $b^{2} \approx 4 a c$
- In fixed point...

$$
\begin{array}{r}
1.10010011010010010011101 \\
-\quad 1.10010011010010010011100
\end{array}
$$

0.00000000000000000000001

- Which gets renormalised with no signal that almost all digits have been lost.

Compiler "Optimizations"

- Floating Point does not obey the laws of algebra.
- Replace $\times / 2$ with $0.5 * x-$ good
- Replace $\mathbf{x} / 10$ with $0.1 * x-$ bad
- Replace $\mathbf{x}^{\boldsymbol{*}} \mathbf{y}-\mathbf{x} \mathbf{x}_{\mathbf{z}}$ with $\mathbf{x}^{\star}(\mathbf{y}-\mathbf{z})$ - bad if $\mathrm{y} \approx \mathrm{z}$
- Replace $(\mathbf{x}+\mathbf{y})+\mathbf{z}$ with $\mathbf{x +}(\mathbf{y}+\mathbf{z})$ - bad
- A good compiler will not alter or reorder floating point expressions.
- Compilers should flag bad constants, e.g.

$$
\text { float } x=1.0 e-40 \text {; }
$$

Decimal to Binary Conversion

- In order to reconstruct the correct binary value from a decimal constant

Single float : 9 digits
 Double float : 17 digits

- Loose proof in the Proceedings
- works by analyzing the number of representable values in subranges of the number line, showing a need for between 6 and 9 decimal digits for single precision

Approximation Error

Measuring Error

- Absolute Error
- Measures the size of deviation, but tell us nothing about the significance
- The abs() is often ignored for graphing

$$
\text { error }_{\text {abs }}=\left|f_{\text {actual }}-f_{\text {approx }}\right|
$$

Measuring Error

- Absolute Error sometimes written ULPs
- Units in the Last Place

Approx	Actual	ULPs
0.0312	0.0314	2
0.0314	0.0314159	0.159

Measuring Error

- Relative Error
- A measure of how important the error is.

$$
\text { error }_{\text {rel }}=1-\frac{f_{\text {approx }}}{f_{\text {actual }}}
$$

Example: Smoothstep Function

- Used for ease-in ease-out animations and anti-aliasing hard edges
- Flat tangents at $x=0$ and $x=1$

$$
f(x)=\frac{1}{2}-\frac{\cos (\pi x)}{2}
$$

Smoothstep Function

Smoothstep Approximation

- A cheap polynomial approximation
- From the family of Hermite blending functions.

$$
f_{\text {approx }}(x)=3 x^{2}-2 x^{3}
$$

Smoothstep Approximation

Absolute Error

Relative Error

Relative Error Detail

Incremental Algorithms

Incremental Methods

Q: What is the fastest method to calculate sine and cosine of an angle?

A: Just two instructions.
There are however two provisos.

1. You have a previous answer to the problem.
2. You are taking equally spaced steps.

Resonant Filter

- Example using 64 steps per cycle.
- NOTE: new s uses the previously updated c.

```
int N = 64;
float a = sin(2PI/N);
float c = 1.0f;
float s = 0.0f;
for(int i=0; i<M; ++i) {
    output_sin = s;
    output_cos = c;
    c = c - s*a;
    s = s + c*a;
}
```


Resonant Filter Graph

Resonant Filter Quarter Circle

Goertzels Algorithm

- A more accurate algorithm
- Uses two previous samples (Second Order)
- Calculates x = $\sin (a+n * b)$ for $a l l$ integer n

```
float cb = 2*cos(b);
float s2 = sin(a+b);
float s1 = sin(a+2*b);
float c2 = cos(a+b);
float c1 = cos(a+2*b);
float s,c;
for(int i=0; i<m; ++i) {
    s = cb*s1-s2;
    c = cb*c1-c2;
    s2 = s1; c2 = c1;
    s1 = s; c1 = c;
    output_sin = s;
    output_cos = c;
}
```


Goertzels Algorithm Graph

Goertzels Initialization

- Needs careful initialization
- You must account for a three iteration lag

```
// N steps over 2PI radians
float b = 2PI/N;
// subtract three steps from initial value
float new_a = a - 3.0f * b;
```


Goertzels Algorithm Quarter Circle

Table Based Solutions

Table Based Algorithms

- Traditionally the sine/cosine table was the fastest possible algorithm
- With slow memory accesses, it no longer is
- New architectures resurrect the technique
- Vector processors with closely coupled memory
- Large caches with small tables forced in-cache
- Calculate point samples of the function
- Hash off the input value to find the nearest samples
- Interpolate these closest samples to get the result

Table Based Sine

Table Based Sine Error

Precalculating Gradients

- Given an index i, the approximation is...

$$
\begin{aligned}
\sin (x) & \approx \operatorname{table}[i]+\Delta *(\operatorname{table}[i+1]-\operatorname{table}[i]) \\
& =\operatorname{table}[i]+\Delta * \operatorname{gradient}[i]
\end{aligned}
$$

- Which fits nicely into a 4-vector...

sine	cosine	sin-grad	cos-grad

How Accurate Is My Table?

- The largest error occurs when two samples straddle the highest curvature.
- Given a stepsize of Δx, the error E is:

$$
E=1-\cos \left(\frac{\Delta x}{2}\right)
$$

- e.g. for 16 samples, the error will be:

$$
1-\cos (\pi / 16)=0.0192147
$$

How Big Should My Table Be?

- Turning the problem around, how big should a table be for an accuracy of E ?
- We just invert the expression...

$$
\begin{aligned}
E & =1 \% \\
1-\cos (\pi / N) & <1 \% \\
\cos (\pi / N) & >1-0.01 \\
N & >\pi / \arccos (0.99) \\
N & >22.19587 \ldots \\
N & \approx 23
\end{aligned}
$$

How Big Should My Table Be?

- We can replace the arccos() with a small angle approximation, giving us a looser bound.

$$
N=\frac{\pi}{\sqrt{2 E}}
$$

- Applying this to different accuracies gives us a feel for where tables are best used.

Table Sizes

1\% accurate 0.1\% accurate	E	360°	45°
	0.01	23	3
	0.001	71	9
0.01\% accurate	0.0001	223	28
1 degree	0.01745	17	3
0.1 degree	0.001745	54	7
8-bit int	2-7	26	4
16-bit int	2-15	403	51
24-bit float	10-5	703	88
32-bit float	10-7	7025	880
64-bit float	10-17	~infinite	$8.7 e+8$

Range Reduction

Range Reduction

- We need to map an infinite range of input values x onto a finite working range [0. C].
- For most transcendentals we use a technique called "Additive Range Reduction"
- Works like $\mathrm{y}=\mathrm{x}$ mod c but without a divide.
- We just work out how many copies of \mathbf{c} to subtract from \mathbf{x} to get it within the target range.

Additive Range Reduction

1. We remap 0..C into the $0 . .1$ range by scaling
```
const float C = range;
const float invC = 1.0f/C;
x = x*invC;
```

2. We then truncate towards zero (e.g. convert to int)
```
int k = (int) (x*invC);
    // or (x*invC+0.5f);
```

3. We then subtract k copies of C from x .
```
float y = x - (float) k*C;
```


High Accuracy Range Reduction

- Notice that $\mathrm{y}=\mathrm{x}-\mathrm{k}$ *C has a destructive subtraction.
- Avoid this by encoding C in several constants.
- First constant C1 is a rational that has M bits of c's
mantissa, e.g. PI = 201/64 = 3.140625
- Second constant C2 = C - C1
- Overall effect is to encode c using more bits than machine accuracy.

```
float n = (float)k;
float y = (x - n*C1) - n*C2;
```


Truncation Towards Zero

- Another method for truncation

- Add the infamous $1.5 * 2{ }^{24}$ constant to your float
- Subtract it again
- You will have lost the fractional bits of the mantissa

$$
\begin{array}{ll}
\mathrm{A}=123.45 & =1111011.01110011001100110 \\
\mathrm{~B}=1.5^{\star} 2^{\wedge} 24 & =1100000000000000000000000 . \\
\mathrm{A}=\mathrm{A}+\mathrm{B} & =1100000000000000001111011 . \\
\mathrm{A}=\mathrm{A}-\mathrm{B} & =1111011.00000000000000000
\end{array}
$$

- This technique requires you know the range of your input parameter...

Quadrant Tests

- Instead of range reducing to a whole cycle, let's use C=Pi/2 - a quarter cycle
- The lower bits of k now holds which quadrant our angle is in
- Why is this useful?
- Because we can use double angle formulas
- A is our range reduced angle.
- B is our quadrant offset angle.

$$
\begin{aligned}
& \sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B) \\
& \cos (A+B)=\cos (A) \cos (B)+\sin (A) \sin (B)
\end{aligned}
$$

Double Angle Formulas

- With four quadrants, the double angle formulas now collapses into this useful form

$$
\begin{aligned}
& \sin (y+0 * \pi / 2)=\sin (y) \\
& \sin (y+1 * \pi / 2)=\cos (y) \\
& \sin (y+2 * \pi / 2)=-\cos (y) \\
& \sin (y+3 * \pi / 2)=-\sin (y)
\end{aligned}
$$

Four Segment Sine

A Sine Function

- Leading to code like this:

```
float table_sin(float x)
{
    const float C = PI/2.0f;
    const float invC = 2.0f/PI;
    int k = (int) (x*invC);
    float y = x-(float)k*C;
    switch(k&3) {
        case 0: return sintable(y);
        case 1: return sintable(TABLE_SIZE-y);
        case 2: return -sintable(TABLE_SIZE-y);
        default: return -sintable(y);
    }
    return 0;
}
```


More Quadrants

- Why stop at just four quadrants?
- If we have more quadrants we need to calculate both the sine and the cosine of y.
- This is called the reconstruction phase.

$$
\sin \left(y+\frac{3 \pi}{16}\right)=\sin (y) * \cos \left(\frac{3 \pi}{16}\right)+\cos (y) * \sin \left(\frac{3 \pi}{16}\right)
$$

- Precalculate and store these constants.
- For little extra effort, why not return both the sine AND cosine of the angle at the same time?
- This function traditionally called sincos () in FORTRAN libraries

Sixteen Segment Sine

```
float table_sin(float x)
{
    const float C = PI/2.0f;
    const float invC = 2.0f/PI;
    int k = (int) (x*invC);
    float y = x-(float)k*C;
    float s = sintable(y);
    float c = costable(y) ;
    switch(k&15) {
            case 0: return s;
            case 1: return s*0.923879533f + c*0.382683432f;
            case 2: return s*0.707106781f + c*0.707106781f;
            case 3: return s*0.382683432f + c*0.923879533f;
            case 4: return c;
        }
    return 0;
}
```


Math Function Forms

- Most math functions follow three phases of execution

\author{

1. Range Reduction
 2. Approximation
 3. Reconstruction
}

- This is a pattern you will see over and over
- Especially when we meet Polynomial Approximations

Polynomial Approximation

Infinite Series

- Most people learn about approximating functions from Calculus and Taylor series

$$
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\ldots
$$

- If we had infinite time and infinite storage, this would be the end of the lecture.

Taylor Series

- Taylor series are generated by repeated differentiation
- More strictly, the Taylor Series around $x=0$ is called the Maclauren series

$$
f(x)=f(0)+f^{\prime}(0)+\frac{f^{\prime \prime}(0)}{2!}+\frac{f^{\prime \prime \prime}(0)}{3!}+\ldots
$$

- Usually illustrated by graphs of successive approximations fitting to a sine curve.

Taylor Approx of Sine

Properties Of Taylor Series

$$
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\ldots
$$

- This series shows all the signs of convergence
- Alternating signs
- Rapidly increasing divisor
- If we truncate at the $7^{\text {th }}$ order, we get:

$$
\begin{aligned}
\sin (x) & \approx x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7} \\
& =x-0.16667 x+0.0083333 x^{5}-0.00019841 x^{7}
\end{aligned}
$$

Graph of Taylor Series Error

- The Taylor Series, however, has problems
- The problem lies in the error
- Very accurate for small values but is exponentially bad for larger values.
- So we just reduce the range, right?
- This improves the maximal error.
- Bigger reconstruction cost, large errors at boundaries.
- The distribution of error remain the same.
- How about generating series about x=Pi/4
- Improves the maximal error.
- Now you have twice as many coefficients.

Taylor $7^{\text {th }}$ Order for -Pi/2..Pi/2

Taylor $7^{\text {th }}$ Order for 0..Pi/2

Taylor $\mathbf{7}^{\text {th }}$ Order for 0..Pi/2

- And now the bad news.

$$
\begin{aligned}
\sin (x) \approx & -0.0000023014110+ \\
& 1.000023121 x+ \\
- & 0.00010117322 x^{2}+ \\
- & 0.1664154429 x^{3}+ \\
- & 0.00038530806 x^{4}+ \\
& 0.008703147018 x^{5}+ \\
- & 0.0002107589082 x^{6}+ \\
- & 0.0001402989645 x^{7}
\end{aligned}
$$

Taylor Series Conclusion

- For our purposes a Taylor series is next to useless
- Wherever you squash error it pops back up somewhere else.
- Sine is a well behaved function, the general case is much worse.
- We need a better technique.
- Make the worst case nearly as good as the best case.

Orthogonal Polynomials

Orthogonal Polynomials

- Families of polynomials with interesting properties.
- Named after the mathematicians who discovered them
- Chebyshev, Laguerre, Jacobi, Legendre, etc.
- Integrating the product of two O.P.s returns zero if the two functions are different.

$$
\int w(x) P_{i}(x) P_{j}(x) d x=\left\{\begin{array}{cc}
c_{j} & \text { if } i=j \\
0 & \text { otherwise }
\end{array}\right.
$$

- Where $w(x)$ is a weighting function.

Orthogonal Polynomials

- Why should we care?
- If we replace $P_{i}(x)$ an arbitrary function $f(x)$, we end up with a scalar value that states how similar $f(x)$ is to $P_{j}(x)$.
- This process is called projection and is often notated as

$$
\left\langle f \mid P_{j}\right\rangle=\langle f| w\left|P_{j}\right\rangle=\int f(x) P_{j}(x) w(x) d x
$$

- Orthogonal polynomials can be used to approximate functions
- Much like a Fourier Transform, they can break functions into approximating components.

Chebyshev Polynomials

- Lets take a concrete example
- The Chebyshev Polynomials $\mathrm{T}_{\mathrm{n}}(\mathrm{x})$

$$
\begin{aligned}
T_{0}(x) & =1 \\
T_{1}(x) & =x \\
T_{2}(x) & =2 x^{2}-1 \\
T_{3}(x) & =4 x^{3}-3 x \\
T_{4}(x) & =8 x^{4}-8 x^{2}-1 \\
T_{4}(x) & =16 x^{5}-20 x^{3}+5 x \\
T_{n+1}(x) & =2 x T_{n}(x)-T_{n-1}(x)
\end{aligned}
$$

Chebyshev Plots

- The first five Chebyshev polynomials

Chebyshev Approximation

- A worked example.
- Let's approximate $f(x)=\sin (x)$ over $[-\pi . \pi]$ using Chebyshev Polynomials.
- First, transform the domain into [-1..1]

$$
\begin{aligned}
a & =-\pi \\
b & =\pi \\
g(x) & =f\left(\frac{a-b}{2} x+\frac{a+b}{2}\right) \\
& =\sin (\pi x)
\end{aligned}
$$

Chebyshev Approximation

- Calculate coefficient \mathbf{k}_{n} for each $\mathrm{T}_{\mathrm{n}}(\mathbf{x})$

$$
k_{n}=\frac{\int_{-1}^{1} g(x) T_{n}(x) w(x) d x}{c_{n}}
$$

Where the constant c_{n} and weighting function $\mathrm{w}(\mathrm{x})$ are

$$
c_{n}=\left\{\begin{array}{ll}
\pi & \text { if } n=0 \\
\pi / 2 & \text { otherwise }
\end{array} \quad w(x)=\frac{1}{\sqrt{1-x^{2}}}\right.
$$

Chebyshev Coefficients

- The resulting coefficients

$$
\begin{aligned}
& k_{0}=0.0 \\
& k_{1}=0.5692306864 \\
& k_{2}=0.0 \\
& k_{2}=-0.666916672 \\
& k_{4}=0.0 \\
& k_{5}=0.104282369 \\
& k_{6}=\ldots
\end{aligned}
$$

- This is an infinite series, but we truncate it to produce an approximation to $\mathrm{g}(\mathrm{x})$

Chebyshev Reconstruction

- Reconstruct the polynomial in \mathbf{x}
- Multiply through using the coefficients k_{n}

$$
\begin{aligned}
g(x) \approx & k_{0}(1)+ \\
& k_{1}(x)+ \\
& k_{2}\left(2 x^{2}-1\right)+ \\
& k_{3}\left(4 x^{3}-3 x\right)+ \\
& k_{3}\left(4 x^{3}-3 x\right)+ \\
& k_{4}\left(8 x^{4}-8 x^{2}-1\right)+ \\
& k_{5}\left(16 x^{5}-20 x^{3}+5 x\right)
\end{aligned}
$$

Chebyshev Result

- Finally rescale the domain back to [- $\pi . . \pi]$

$$
f(x) \leftarrow g\left(\frac{2}{b-a} x-\frac{a+b}{b-a}\right)
$$

- Giving us the polynomial approximation

$$
\begin{aligned}
f(x) \approx & 0.984020813 x+ \\
- & 0.153301672 x^{3}+ \\
& 0.00545232216 x^{5}
\end{aligned}
$$

Chebyshev Result

- The approximated function $\mathbf{f}(\mathbf{x})$

Chebyshev Absolute Error

- The absolute error $\sin (x)-f(x)$

Chebyshev Relative Error

- The relative error tells a different story...

Chebyshev Approximation

- Good points
- Approximates an explicit, fixed range
- Uses easy to generate polynomials
- Integration is numerically straightforward
- Orthogonal Polynomials used as basis for new techniques
- E.g. Spherical Harmonic Lighting
- Bad points
- Imprecise control of error
- No clear way of deciding where to truncate series
- Poor relative error performance
[Continued in part 2]

